delete

Contattaci

back to resources

Tradurre la Lingua Italiana dei Segni - il Progetto LIS2Speech

LIS
LIS2SPEECH
Traduzione LIS
data
10/6/2021
data progetto
autore
Carla Melia, Giuseppe Mercurio
cliente
partnership
url
No items found.

Le persone sorde e ipoudenti possono comunicare tra loro utilizzando la Lingua dei Segni, ma possono avere difficoltà a connettersi con il resto della società. Il riconoscimento della lingua dei segni (Sign Language Recognition - SLR) è un campo di studio che ha iniziato a essere analizzato già nel 1983, ma solo nell'ultimo decennio questo compito ha guadagnato maggiore attenzione. D'altra parte, il numero di studi sulla Lingua dei Segni Italiana (LIS) è ancora scarso e la maggior parte dei lavori pubblicati riguarda le lingue dei segni americane, cinesi e tedesche.

Per risolvere il problema, abbiamo sfruttato le reti neurali, il Deep Learning e la Computer Vision per creare un'applicazione, chiamata LIS2Speech (LIS2S), in grado di restituire la traduzione italiana di un segno LIS, eseguita all'interno di un video registrato. Il metodo si basa sulle caratteristiche scheletriche delle mani, del corpo e del viso estratte da video RGB senza la necessità di apparecchiature aggiuntive, come i guanti colorati.

Poiché l'obiettivo è quello di abbracciare il maggior numero possibile di persone, LIS2S è stato sviluppato come Progressive Web App, in grado di essere eseguito su qualsiasi dispositivo dotato di fotocamera, sia esso un computer o uno smartphone.

I risultati ottenuti con l'approccio descritto sono in linea con quelli ottenuti da strumenti automatici sviluppati per altre lingue dei segni, consentendo al modello di comprendere e distinguere correttamente segni appartenenti a un vocabolario di 50 parole, che è in accordo con le dimensioni di altri corpora per il riconoscimento di lingue dei segni isolate.

Inoltre, è stato creato un nuovo dataset per il riconoscimento continuo della lingua dei segni (CSLR), che viene costantemente ampliato, per creare un benchmark pubblicamente disponibile per questo tipo di attività.

La traduzione delle lingue dei segni come problema sociale

Le lingue parlate e le lingue dei segni si differenziano per alcuni aspetti importanti:

  • le prime utilizzano il canale "vocale - uditivo", poiché il suono viene prodotto con la bocca e percepito con l'orecchio;
  • le seconde invece utilizzano il canale "corporale - visivo", i segni vengono prodotti con il corpo (mani, braccia, espressioni facciali) e percepiti con gli occhi.

Esistono diversi tipi di lingue dei segni, perché non sono internazionali e anche all'interno di una lingua dei segni nazionale sono presenti diversi dialetti. Sono infatti lingue naturali, in quanto si sono evolute spontaneamente laddove le comunità di sordi avevano la possibilità di comunicare reciprocamente, e non sono derivate dalle lingue parlate, perché hanno un vocabolario e strutture grammaticali proprie.

L'elemento fondamentale di una lingua dei segni è la glossa, che combina caratteristiche manuali e non manuali e rappresenta il significato più prossimo di un segno. In base al contesto, una caratteristica specifica può essere il fattore più importante nell'interpretazione di una glossa: può cambiare il significato di un verbo, fornire informazioni spaziali o temporali e discriminare tra oggetti o persone.

Come è noto, esiste una difficoltà intrinseca nella comunicazione tra la comunità dei sordi e il resto della società (secondo l'ANSA, nel 2018 c'erano più di 72 milioni di persone in tutto il mondo che utilizzavano la lingua dei segni), quindi la progettazione di sistemi robusti per il riconoscimento automatico della lingua dei segni ridurrebbe ampiamente questo divario.

Sign Language Recognition e Computer Vision

La definizione di riconoscimento della lingua dei segni (Sign Language Recognition, SLR) può essere espressa come il compito di dedurre le glosse eseguite da un segnante da registrazioni video. Può essere considerato in qualche modo correlato al riconoscimento di azioni o gesti umani, ma l'SLR automatico presenta le seguenti sfide aggiuntive:

  • L'interpretazione del linguaggio dei segni è fortemente influenzata dalla posizione esatta nello spazio e nel contesto circostante. Ad esempio, non esistono pronomi personali (ad esempio, "lui", "lei", ecc.), perché il segnante indica direttamente qualsiasi attore coinvolto;
  • Molte glosse sono riconoscibili solo grazie alle loro caratteristiche non manuali e di solito sono difficili da individuare;
  • In base alla velocità di esecuzione di una determinata glossa, essa può avere un significato diverso. Ad esempio, i segnanti non utilizzerebbero due glosse per esprimere "correre velocemente", ma semplicemente accelererebbero l'esecuzione dei segni coinvolti.

I meccanismi di Machine Learning (ML) e Deep Learning (DL) sono alla base della cosiddetta Computer Vision (CV). Si tratta di un campo scientifico interdisciplinare che si occupa di come i computer possano ottenere una comprensione di alto livello da immagini o video digitali. L'SLR è un compito estremamente correlato alla CV e sfrutta il significativo miglioramento delle prestazioni ottenuto da molti compiti legati ai video, grazie all'ascesa delle reti profonde (deep networks).

LIS2Speech ha l'obiettivo di produrre uno strumento utile a migliorare l'integrazione delle persone sorde con il resto della società; questo strumento deve essere facilmente accessibile da chiunque, ed è per questo che si è scelto di sviluppare un'applicazione in grado di essere eseguita su computer portatili o anche su smartphone.

Lo stato dell'arte

L'ultimo decennio ha visto la rapida espansione delle tecniche di Deep Learning in molte applicazioni che coinvolgono input spazio-temporali. La Computer Vision è un'area di ricerca incredibilmente promettente, con ampi margini di miglioramento; infatti, compiti legati al video come il riconoscimento di azioni umane, il riconoscimento di gesti, la cattura di movimenti ecc. hanno visto notevoli progressi nello sviluppo e nelle prestazioni. L'ambito SLR è estremamente correlato al CV, poiché richiede l'analisi e l'elaborazione di pezzi o sequenze video per estrarre informazioni significative; per questo motivo la maggior parte degli approcci che affrontano l'SLR si sono orientati in questa direzione.

Il Sign Language Recognition può svolgere un ruolo importante nell'affrontare il problema dell'integrazione delle persone sorde con il resto della società. L'attenzione della comunità internazionale per questo particolare problema è cresciuta negli ultimi anni, ed è aumentato il numero di studi pubblicati, ma anche la quantità di set di dati disponibili.

Esistono diversi compiti di SLR automatico, a seconda del livello di dettaglio della modellazione e della successiva fase di riconoscimento; questi possono essere approssimativamente suddivisi in:

  • SLR isolato: in questa categoria, la maggior parte dei metodi mira ad affrontare compiti di classificazione di segmenti video, partendo dal presupposto fondamentale che sia presente un singolo gloss.
  • Rilevamento di segni in flussi continui: l'obiettivo di questi approcci è riconoscere un insieme di glosse predefinite in un flusso video continuo.
  • Continuous SLR (CSLR): l'obiettivo di questi metodi è identificare la sequenza di glosse presenti in una sequenza video continua o non segmentata. Le caratteristiche di questa particolare categoria di meccanismi sono più adatte ai requisiti delle applicazioni SLR reali.

Questa distinzione è necessaria per comprendere i diversi tipi di problemi presenti per ogni compito. Storicamente, prima dell'avvento dei metodi di deep learning, l'attenzione era rivolta all'identificazione di glosse isolate e all'individuazione di gesti, per questo motivo gli studi sul SLR isolato sono più comuni. Nell'immagine seguente si può osservare l'andamento degli studi sul riconoscimento isolato e continuo in blocchi di cinque anni fino al 2020; la crescita sembra esponenziale per gli studi isolati, mentre è quasi lineare per quelli continui. Ciò può riflettere la difficoltà dello scenario di riconoscimento continuo e la scarsità di set di dati di addestramento disponibili. Infatti, in media si può osservare che gli studi pubblicati utilizzando dati isolati della lingua dei segni sono almeno il doppio.

In termini di dimensione del vocabolario, la maggior parte dei lavori SLR isolati modella una quantità molto limitata di segni (al di sotto dei 50 segni), mentre questo non è il caso quando si confronta il CSLR, dove gli studi complessivi sono più o meno uniformemente distribuiti su tutti i vocabolari dei segni.

Tecnologie e architetture di LIS2Speech

L'applicazione LIS2S è composta principalmente da due parti:

  1. sul lato client c'è una Progressive Web Application (PWA), che sarà utilizzata dagli amministratori e dagli utenti per accedere alle funzionalità fornite dal software;
  2. il back-end, che sarà gestito da un processo server in costante ascolto delle richieste provenienti dall'applicazione.

Ogni volta che il server riceverà una nuova richiesta, eseguirà una nuova istanza di un container Docker: questo avrà il compito di elaborare i dati provenienti dalla richiesta e restituire la traduzione al client. Nella fase prototipale, il server è stato ospitato su una macchina proprietaria, mentre nella fase finale verrà utilizzato un cluster Lexis per fornire un servizio altamente scalabile e performante.

Passando alla sezione back-end dell'applicazione LIS2S, il cuore del meccanismo di traduzione è costituito dall'elaborazione dei video ricevuti. Questo particolare compito è stato realizzato sfruttando le potenzialità del linguaggio di programmazione Python, che offre un set completo di strumenti e librerie estremamente utili per la Computer Vision e la manipolazione dei dati. Entrando più nel dettaglio, i pacchetti OpenCV e MediaPipe sono stati utilizzati principalmente per elaborare i video del nostro set di dati ed estrarre informazioni scheletriche su mani, viso e parte superiore del corpo del soggetto.

Il cuore dell'applicazione LIS2S sta nella capacità di riconoscere il segno eseguito dall'utente nel suo video. Per raggiungere questo obiettivo non banale, è necessario utilizzare meccanismi e metodologie di Deep Learning (DL); con il passare degli anni, i miglioramenti della DL ci permettono di costruire tecnologie che prima non erano nemmeno immaginabili. Per utilizzare queste tecnologie, sono stati sviluppati diversi framework: tra questi, i più noti sono Keras, PyTorch e TensorFlow. TensorFlow è il più vecchio, mentre negli ultimi due anni le due principali librerie DL che hanno guadagnato una grande popolarità, soprattutto per la facilità di utilizzo rispetto a TensorFlow, sono Keras e Pytorch. Il framework PyTorch è stato scelto perché offre un perfetto equilibrio tra facilità d'uso e controllo sull'addestramento e sul test del modello.

Pipeline per il riconoscimento del linguaggio dei segni

Passando al riconoscimento vero e proprio del linguaggio dei segni, il nostro team di sviluppo, dopo un'accurata analisi, ha evidenziato la necessità di quattro diversi modelli. In realtà, il prototipo sviluppato si concentra solo sui primi due modelli, che si occupano dell'estrazione dei dati scheletrici e del riconoscimento dei segni isolati; gli ultimi due sono riportati per dare indicazioni su futuri miglioramenti, al fine di ampliare i casi d'uso a cui questa applicazione potrebbe essere applicata.

Nel primo modello i dati scheletrici vengono estratti dal soggetto invece di utilizzare direttamente i video: questa scelta è stata fatta per ridurre la dimensionalità dei dati da manipolare e per dimostrare che utilizzando solo dati più leggeri come quelli scheletrici è possibile ottenere risultati all'avanguardia.

Nell'architettura proposta, dopo l'estrazione delle caratteristiche è possibile individuare la rete neurale vera e propria, che ha il compito di comprendere l'informazione temporale contenuta nelle caratteristiche con cui viene alimentata, e restituire il segno previsto.

Per fare ciò, introduciamo innanzitutto le reti neurali ricorrenti (RNN - Recurrent Neural Network): si tratta di particolari reti progettate per accettare una serie di input senza limiti predeterminati di dimensione; in questo modo, l'input viene considerato come una serie di informazioni, che possono avere un significato aggiuntivo rispetto a quello su cui la rete si sta addestrando. Un singolo elemento della serie di input è correlato ad altri e probabilmente avrà un'influenza sui suoi vicini; le RNN sono in grado di catturare questa relazione tra gli input in modo significativo. Infatti, sono in grado di "ricordare" il passato e di prendere decisioni in base a ciò che hanno imparato dal passato.

Il limite maggiore di questo sistema è che l'input deve essere segmentato, poiché questo progetto si concentra sul riconoscimento isolato del linguaggio dei segni, e inoltre la traduzione non è in tempo reale. Durante lo sviluppo del progetto, è stato preso in considerazione un altro modello per passare efficacemente dal riconoscimento isolato a quello continuo del linguaggio dei segni. Questo modello è attualmente in fase di sviluppo e sarà, insieme all'implementazione in tempo reale di questa applicazione, il prossimo passo da raggiungere. In particolare, il terzo modello dovrebbe occuparsi della segmentazione delle frasi in lingua dei segni.

Infine, per rendere la traduzione più leggibile da parte di utenti non sordi, il modello pensato come finale dovrebbe eseguire un tipo di riformulazione, manipolando la traduzione grezza e convertendola in una frase italiana corretta.

Collaborazione con Lexis e IT4Innovations: il cluster Barbora

Con High Performance Computing (HPC) ci si riferisce alle tecnologie utilizzate dai cluster di computer per creare sistemi di elaborazione in grado di fornire prestazioni molto elevate dell'ordine dei PetaFLOPS, tipicamente utilizzate per il calcolo parallelo.

Il progetto LIS2Speech beneficerà di un sistema HPC che richiede investimenti significativi e la cui gestione richiede l'impiego di personale specializzato di alto livello. La complessità intrinseca e la rapida evoluzione tecnologica di questi strumenti richiede inoltre che tale personale interagisca profondamente con gli utenti finali (gli esperti dei vari settori scientifici in cui questi sistemi vengono utilizzati), per consentire loro di utilizzare gli strumenti in modo efficiente.

Il progetto LEXIS [3] (Large-scale EXecution for Industry & Society) sta realizzando una piattaforma ingegneristica avanzata alla confluenza di HPC, Cloud e Big Data, che sfrutta risorse su larga scala geograficamente distribuite dell'infrastruttura HPC esistente, impiega soluzioni di analisi dei Big Data e le integra con servizi Cloud. Ulteriori informazioni sul progetto HPC Lexis sono disponibili sul sito https://lexis-project.eu/web/.

LIS2S ha permesso una collaborazione con il Progetto Lexis - High Performance Computing (HPC) in Europa, che ha fornito al Team Orbyta l'accesso al cluster Barbora.

Barbora è un supercomputer fornito da Atos IT Solutions and Services[2]. Si tratta di un'estensione del supercomputer esistente Anselm, commissionato nel 2013. È stato ufficialmente preso in consegna dal Centro nazionale di supercalcolo IT4Innovations e messo in funzione a fine settembre 2019.

"Il nostro obiettivo è quello di rinnovare regolarmente le nostre risorse di calcolo in modo che i nostri utenti abbiano accesso a sistemi di calcolo all'avanguardia e siano in grado di soddisfare il più possibile le loro crescenti esigenze", afferma Vít Vondrák, direttore del Centro nazionale di supercalcolo IT4Innovations.

IT4Innovations è il principale centro di ricerca, sviluppo e innovazione attivo nel campo del calcolo ad alte prestazioni (HPC), dell'analisi dei dati (HPDA) e dell'intelligenza artificiale (AI). Gestisce i sistemi di supercalcolo più potenti della Repubblica Ceca, che vengono messi a disposizione di gruppi di ricerca cechi e stranieri provenienti dal mondo accademico e industriale[4].

Il cluster Barbora[1], su cui LIS2S è stato migrato grazie al team LEXIS, è composto da 201 nodi di calcolo, per un totale di 7232 core di calcolo con 44544 GB di RAM, che offrono prestazioni teoriche di picco superiori a 848 TFLOP/s.

I nodi sono interconnessi tramite una rete InfiniBand fat-tree completamente non bloccante e sono dotati di processori Intel Cascade Lake. Alcuni nodi sono dotati anche di NVIDIA Tesla V100-SXM2. Il cluster viene eseguito con un sistema operativo compatibile con la famiglia Red Hat Linux.

Il team Lexis ha installato i pacchetti Python di deep learning necessari, accessibili tramite l'ambiente dei moduli. Il gestore del carico di lavoro PBS Professional Open Source Project fornisce l'allocazione delle risorse di calcolo e l'esecuzione dei lavori.

Ulteriori informazioni sui cluster Barbora sono disponibili all'indirizzo https://docs.it4i.cz/barbora/introduction/.

In particolare, Barbora viene utilizzato da LIS2S come

  1. Piattaforma di calcolo dell'addestramento ML offline per addestrare tutti i modelli (sono necessari nuovi addestramenti per i miglioramenti e gli aggiornamenti e per l'ampliamento del dizionario).
  1. Piattaforma di elaborazione video offline per l'aumento dei dati.
  1. Utilizzo in tempo reale da parte degli utenti (inviare e ricevere richieste di traduzione in tempo reale da parte di più utenti e ottenere dati di feedback dagli utenti).
  1. Utilizzo Runtime/Offline Admin (gestione del servizio (ad esempio, interruzione temporanea), richiesta di aggiunta di video al dizionario, richiesta di ottenimento per la supervisione delle prestazioni e dell'utilizzo).
  1. Memorizzazione dei dati (dati alfanumerici strutturati permanenti e temporanei, video grezzi permanenti e temporanei e video elaborati).

Altre collaborazioni

Dal 2020 collaboriamo con il Dipartimento di Automazione e Informatica del Politecnico di Torino e con l'Ente Nazionale Sordi per ottenere un Dataset più ampio e testare la nostra applicazione.

L'innovazione di LIS2Speech

Allo stato attuale, LIS2S presenta già molteplici punti di innovazione rispetto all'attuale stato dell'arte:

  1. l'applicazione non richiede attrezzature speciali (Kinect, guanti...) ma solo una videocamera e può essere eseguita su qualsiasi dispositivo, smartphone, tablet o PC;
  2. l'uso di dati scheletrici invece che di video grezzi è innovativo e ci ha permesso di ottenere una rete più facile da addestrare;
  3. il nostro studio non si concentra solo sui dati della mano, ma anche sulla postura del corpo e sui movimenti degli occhi, delle labbra e delle sopracciglia, a differenza della maggior parte degli studi nello stesso settore;
  4. il numero di parole del vocabolario è maggiore rispetto ad altri studi LIS, ma le prestazioni sono quasi identiche. È stato creato un nuovo dataset LIS in cui non sono presenti solo i singoli segni, ma intere frasi con l'indicazione dei segni che le compongono;
  5. lo studio e il dataset sono stati costruiti in modo tale che la rete sia indipendente dal segnante, cioè da chi fa il segno e sia in grado di riconoscere il gesto nella maggior parte delle condizioni visive;
  6. l'applicazione può essere utilizzata anche per acquisire nuovi segni da tutti gli utenti admin, permettendo al dizionario di crescere nel tempo in modo indipendente. È incluso anche un processo di riqualificazione del modello periodico per consentire all'applicazione di apprendere questi nuovi segni;
  7. l'applicazione presenterà un sistema di raccolta di feedback sulla traduzione LIS;
  8. l'applicazione presenterà la possibilità di modificare la traduzione in base all'utilizzo da parte di destrimani o mancini.

A prescindere da quanto è stato fatto per gli altri stati, attualmente non è disponibile un'applicazione che si concentri sulla traduzione dalla LIS all'italiano, e abbiamo intenzione di restituire anche la traduzione sia scritta che parlata. Una volta in italiano possiamo quindi includere anche la traduzione dalla LIS in inglese o in altre lingue. Seguendo la stessa logica, sarebbe possibile, in un'eventuale fase successiva, tradurre dalla LIS ad altre lingue dei segni con opportune animazioni.

L'obiettivo di LIS2S è infatti quello di tradurre non un singolo segno, ma intere frasi in italiano corretto. Va infatti ricordato che la LIS ha una struttura sintattica diversa dall'italiano.

Il team Orbyta sta lavorando duramente per migliorare LIS2S nel tempo e per ampliare le sue funzionalità e condivideremo i nostri progressi con la comunità di ricerca e con i nostri follower.

Fonti

[1] https://docs.it4i.cz/barbora/introduction/, consultato il 12.05.2021

[2] https://www.vsb.cz/en/news-detail/?reportId=39124, consultato il 12.05.2021

[3] https://lexis-project.eu/web/, consultato il 10.05.2021

[4] https://www.youtube.com/watch?v=4TGjJkwAJ40&t=1s, consultato il 10.05.2021

[5] Slides: Workflow Orchestration on Tightly Federated Computing Resources: the LEXIS approach, EGI 2020 Conference, Workflow management solutions, M. Levrier and A. Scionti, 02/11/2020

Risultati

resources

Monitoraggio dello stato di salute del middleware: l'importanza di un approccio proattivo

Monitoraggio dello stato di salute del middleware: l'importanza di un approccio proattivo

monitoraggio middleware

Avada Software

middleware

Migliora l’efficienza operativa dell’infrastruttura middleware in tutte le unità aziendali

Migliora l’efficienza operativa dell’infrastruttura middleware in tutte le unità aziendali

Middleware

Efficienza operativa

Introduzione a Godot, game engine free & open source

Introduzione a Godot, game engine free & open source

Game Engine

Open Source

Unreal Engine

Unity

TDA in a nutshell: how can we find multidimensional voids and explore the “black boxes” of deep learning?

TDA in a nutshell: how can we find multidimensional voids and explore the “black boxes” of deep learning?

Multidimensional Voids

Black Boxes

Deep Learning

Topological Data Analysis

AI: bias, esempi nella realtà e nella cinematografia

AI: bias, esempi nella realtà e nella cinematografia

Bias

Cinema

AMRITA (Automatic, Maintenance, Reengineering, Integrated, Technology Application)

AMRITA (Automatic, Maintenance, Reengineering, Integrated, Technology Application)

L'ascesa del Prompt Designer: trasformare il design nell'era dell'AI generativa

L'ascesa del Prompt Designer: trasformare il design nell'era dell'AI generativa

Prompt

Design

AI Generativa

AI Designer

Le nuove linee guida per la sicurezza delle password aziendali

Le nuove linee guida per la sicurezza delle password aziendali

Password aziendali

Linee guida Garante Privacy

Garante Privacy

GDPR

6 motivi per scegliere Flutter nel 2024

6 motivi per scegliere Flutter nel 2024

App Development

Google

React Native

AI, sistemi esperti e rappresentazione della conoscenza

AI, sistemi esperti e rappresentazione della conoscenza

Sistemi esperti

Rappresentazione della conoscenza

Tradurre la Lingua Italiana dei Segni - il Progetto LIS2Speech

Tradurre la Lingua Italiana dei Segni - il Progetto LIS2Speech

LIS2SPEECH

Traduzione LIS

User Experience Design tra accessibilità e inclusività

User Experience Design tra accessibilità e inclusività

User Experience

Accessibilità

Inclusività

Assitech.Net entra nella galassia Orbyta Technologies

Assitech.Net entra nella galassia Orbyta Technologies

Orbyta Technologies

Orbyta Group

Acquisizione

News

Programmazione Funzionale Java

Programmazione Funzionale Java

Functional Programming

Java

Software Development

Reactive Programming: parallelizzare con Project Reactor

Reactive Programming: parallelizzare con Project Reactor

Programmazione Reattiva

Reactive Programming

Project Reactor

Piattaforme E-commerce Wholesale per il settore B2B

Piattaforme E-commerce Wholesale per il settore B2B

Wholesale

B2B

Antipattern nello sviluppo software: altri errori da evitare

Antipattern nello sviluppo software: altri errori da evitare

Software Development

Antipattern nello sviluppo software: definizione, ambiti di applicazione ed esempi

Antipattern nello sviluppo software: definizione, ambiti di applicazione ed esempi

Software Development

App tattiche di supporto alla gestione dei progetti reiterativi

App tattiche di supporto alla gestione dei progetti reiterativi

App Development

Power Platform

Low Code

DevOps

Introduzione a Power Pages, il servizio Microsoft per siti web low-code

Introduzione a Power Pages, il servizio Microsoft per siti web low-code

Microsoft

Low-code

Power Platform

Introduzione a Jupyter e Seaborn per Data Analysis e Visualization

Introduzione a Jupyter e Seaborn per Data Analysis e Visualization

Jupiter

Python

Data Analysis

Data Visualization

Come utilizzare Matplotlib per la Data Visualization in Python

Come utilizzare Matplotlib per la Data Visualization in Python

Python

Data Visualization

Data Science

Data Analysis

Introduzione alla libreria Dash per Python

Introduzione alla libreria Dash per Python

Python

Data Science

Data Visualization

Data Analysis

Prime Video passa al monolite: ma allora serverless è inutile? 

Prime Video passa al monolite: ma allora serverless è inutile? 

Tableau per la Business Intelligence: introduzione, tutorial e confronto

Tableau per la Business Intelligence: introduzione, tutorial e confronto

Introduzione a Qlik Sense, piattaforma di Business Intelligence avanzata

Introduzione a Qlik Sense, piattaforma di Business Intelligence avanzata

Applicazioni Cloud Native: definizione, vantaggi e tecnologie

Applicazioni Cloud Native: definizione, vantaggi e tecnologie

Power Apps Tutorial – Case Study: come costruire una business app da zero

Power Apps Tutorial – Case Study: come costruire una business app da zero

Il futuro del gaming tra F2P, GaaS, Crypto e Play to Earn

Il futuro del gaming tra F2P, GaaS, Crypto e Play to Earn

Power Apps Basics: interfacce, implementazione & vantaggi

Power Apps Basics: interfacce, implementazione & vantaggi

Strumenti di Business Intelligence: QlikSense & Power BI a confronto

Strumenti di Business Intelligence: QlikSense & Power BI a confronto

Introduzione a Serverless: non solo Lambda Function

Introduzione a Serverless: non solo Lambda Function

Metaverso: siamo pronti a cogliere l’opportunità?

Metaverso: siamo pronti a cogliere l’opportunità?

Recap Flutter Forward 2023: le 7 novità più interessanti

Recap Flutter Forward 2023: le 7 novità più interessanti

Let's Redux React to a Game

Let's Redux React to a Game

Introduzione a PowerShell

Introduzione a PowerShell

Pago con carta: i trend dei pagamenti digitali e il futuro delle carte di credito

Pago con carta: i trend dei pagamenti digitali e il futuro delle carte di credito

NFT World: il fenomeno NFT tra metaverso, business e GameFi

NFT World: il fenomeno NFT tra metaverso, business e GameFi

Quick Escape Room

Quick Escape Room

Orbyta Invaders Ignition

Orbyta Invaders Ignition

Il lancio della nuova Identity di Orbyta parte dal Metaverso!

Il lancio della nuova Identity di Orbyta parte dal Metaverso!

development

design

metaverse

brand identity

Database a grafo in SQL Server

Database a grafo in SQL Server

Data Science Job Roles: i 4 ruoli più richiesti nel settore

Data Science Job Roles: i 4 ruoli più richiesti nel settore

Teoria dei giochi: Propagazione delle strategie

Teoria dei giochi: Propagazione delle strategie

The chosen one: .NET 5

The chosen one: .NET 5

Network Science e Social Network Analysis

Network Science e Social Network Analysis

Isolation levels on SSMS

Isolation levels on SSMS

Teoria dei Grafi

Teoria dei Grafi

Creare un podcast in automatico a partire da audio vocali e musica

Creare un podcast in automatico a partire da audio vocali e musica

Teoria dei Giochi

Teoria dei Giochi

Recommender systems: principali metodologie degli algoritmi di suggerimento

Recommender systems: principali metodologie degli algoritmi di suggerimento

Introduction to Quantum Computing and Qiskit

Introduction to Quantum Computing and Qiskit

System Versioned Tables

System Versioned Tables

Vim o non Vim

Vim o non Vim

I vantaggi di un Message Broker

I vantaggi di un Message Broker

PlayStation 5 e l'accesso ai dati: un cambio architetturale?

PlayStation 5 e l'accesso ai dati: un cambio architetturale?

Protezione dei Web Services

Protezione dei Web Services

need more info?

Contattaci